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Matrices coupled in a chain: I. Eigenvalue correlations
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Abstract. The general correlation function for the eigenvalues ofp complex Hermitian
matrices coupled in a chain is given as a single determinant. For this we use a slight
generalization of a theorem of Dyson.

1. Introduction

Random matrices were introduced in physics by Wigner [1] in the 1950s to elucidate
the statistical properties of nuclear spectra. They later found applications to study the
distribution of resonance frequencies in random electromagnetic cavities and in metallic
beams, the conductance of heterogeneous wires, quantum chaos,. . . . The models of coupled
random matrices appeared in the study of planar diagrams of quantum field theory [2] and
were used later in two-dimensional quantum gravity. In any statistical study of random
phenomena it is natural to consider the probability densities of—and correlations among—
various quantities of physical interest. In the model of random matrices, single or coupled,
the quantities of interest are the eigenvalues and the study of their correlation functions is
justified in their own right.

The probability density exp[− trV (A)] for the elements of ann × n Hermitian matrix
A is known to give rise to the probability density [3]

F(x1, . . . , xn) ∝ exp

[
−

n∑
i=1

V (xi)

] ∏
16i<j6n

|xi − xj |β (1.1)

for its eigenvaluesx1, . . . , xn. HereV (x) is a real polynomial of even order, the coefficient
of the highest power being positive andβ is the number of real components of a general
element ofA, i.e. β = 1 if A is real symmetric,β = 2 if A is complex Hermitian and
β = 4 if A is quaternion self-dual.

The case of coupled matrices may be represented by a graph where each matrix is
represented by a point, and two points representing matricesA andB are joined by a line
if the coupling factor exp[c tr(AB)] is present in the probability density. When several
matrices are coupled the probability density for the eigenvalues is known only in the case
where these matrices are complex Hermitian and the graph has a tree structure, i.e. does
not have a closed path.
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In what follows we will consider the simplest case of a tree, i.e. that of a chain ofp

complex Hermitiann× n matrices with the joint probability density for their elements

F(A1, . . . , Ap) ∝ exp[− tr{ 12V1(A1)+ V2(A2)+ · · · + Vp−1(Ap−1)+ 1
2Vp(Ap)}]

× exp[tr{c1A1A2+ c2A2A3+ · · · + cp−1Ap−1Ap}] (1.2)

whereVj (x) are real polynomials of even order with positive coefficients of their highest
powers andcj are real constants. For eachj , the eigenvalues of the matrixAj are real and
will be denoted byxj := {xj1, xj2, . . . , xjn}. The probability density for the eigenvalues of
all thep matrices resulting from equation (1.2) is [4–7]

F(x1; . . . ;xp) = C exp

[
−

n∑
r=1

{ 12V1(x1r )+ V2(x2r )+ · · · + Vp−1(xp−1r )+ 1
2Vp(xpr)}

]
×

∏
16r<s6n

(x1r − x1s)(xpr − xps) det[ec1x1r x2s ] det[ec2x2r x3s ] . . .det[ecp−1xp−1r xps ]

(1.3)

= C
[ ∏

16r<s6n
(x1r − x1s)(xpr − xps)

][ p−1∏
k=1

det[wk(xkr , xk+1s)]r,s=1,...n

]
(1.4)

where

wk(ξ, η) := exp[− 1
2Vk(ξ)− 1

2Vk+1(η)+ ckξη] (1.5)

andC is a normalization constant such that the integral ofF over thenp variablesxir is 1.
We will be interested in the correlation functions

Rk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp )

:=
∫
F(x1; . . . ;xp)

p∏
j=1

n!

(n− kj )!
n∏

rj=kj+1

dxjrj . (1.6)

This is the density of ordered sets ofkj eigenvalues ofAj within small intervals around
xj1, . . . , xjkj for j = 1, 2, . . . , p. Here and in what follows, all the integrals are taken over
−∞ to∞.

The casep = 2 was considered earlier [8, 12]; the expressions given in [8], though
correct, can be put in a much simpler form: the general answer can be written as a single
m × m determinant withm = k1 + k2 + · · · + kp. The result is given in section 2 and
the proof in section 3. Our result is a generalization of Dyson’s for a single Hermitian
matrix [9], (the casep = 1), according to which the correlation function ofk eigenvalues
is given by ak × k determinant of the form

Rk(x1, . . . , xk) = det[K(xi, xj )]i,j=1,k (1.7)

the kernelK(x, y) depending on the polynomialV (x).

2. General correlation function

To express our result we need some notation. Recall that a polynomial is called monic
when the coefficient of the highest power is 1. With a monic polynomialPj (ξ) of degree
j let us write

P1j (ξ) := Pj (ξ) (2.1)
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and recursively,

Pij (ξ) :=
∫
Pi−1j (η)wi−1(η, ξ)dη 26 i 6 p. (2.2)

Similarly, with a monic polynomialQj(ξ) of degreej we will write

Qpj (ξ) := Qj(ξ) (2.3)

Qij (ξ) :=
∫
wi(ξ, η)Qi+1j (η) dη 16 i 6 p − 1. (2.4)

With arbitrary monic polynomialsPj (ξ) and Qj(ξ), j = 0, 1, 2, . . . , we can write the
product of differences asn× n determinants∏

16i<j6n
(ξj − ξi) = det[ξ j−1

i ] = det[Pj−1(ξi)] = det[Qj−1(ξi)]. (2.5)

The first equality is known as the Vandermonde determinant [13], while the later equalities
are obtained by the observation that a determinant is not changed if we add to any of its
rows a linear combination of its other rows, and in particular, if we add to itsj th row an
arbitrary linear combination of the rows 1, 2, . . . , j − 1. The idea is to replace the powers
ξ j by arbitrary monic polynomialsPj (ξ) and choose these polynomials in a convenient way
to facilitate later computations. If the polynomialsVj and the constantscj are such that the
moment matrix [Mij ], i, j = 0, 1, . . . , n is non-singular for everyn, where

Mij :=
∫
ξ i(w1 ∗ w2 ∗ · · · ∗ wp−1)(ξ, η)η

j dξ dη (2.6)

and

(wi1 ∗ wi2 ∗ · · · ∗ wik )(ξ, η) :=
∫
wi1(ξ, ξ1)wi2(ξ1, ξ2) . . . wik (ξk−1, η)dξ1 . . .dξk−1 (2.7)

then it is always possible to choose the polynomialsPj (ξ) andQj(ξ) such that∫
Pj (ξ)(w1 ∗ w2 ∗ · · · ∗ wp−1)(ξ, η)Qk(η) dξ dη = hjδjk (2.8)

i.e. they are orthogonal with a non-local weight. This means that the functionsPij (ξ) and
Qij (ξ), which are not necessarily polynomials, are orthogonal∫

Pij (ξ)Qik(ξ) dξ = hjδjk (2.9)

for i = 1, 2, . . . , p andj, k = 0, 1, 2, . . . .
Now define

Kij (ξ, η) := Hij (ξ, η)− Eij (ξ, η) (2.10)

where

Hij (ξ, η) :=
n−1∑
`=0

1

h`
Qi`(ξ)Pj`(η) (2.11)

Eij (ξ, η) :=


0 if i > j
wi(ξ, η) if i = j + 1

(wi ∗ wi+1 ∗ · · · ∗ wj−1)(ξ, η) if i < j + 1.

(2.12a)

(2.12b)

(2.12c)
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Theorem.The correlation function (1.6) is equal to

Rk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp ) = det[Kij (xir , xjs)]i,j=1,...,p;r=1,...,ki ;s=1,...,kj .

(2.13)

This determinant hasm = k1 + · · · + kp rows andm columns; the firstk1 rows andk1

columns are labelled by the pair of indices 1r, r = 1, . . . , k1; the nextk2 rows andk2

columns are labelled by the pair of indices 2r, r = 1, . . . , k2 and so on. Each variable
xir appears in exactly one row and one column, this row and column crossing at the main
diagonal. If all the eigenvalues of a matrixAj are not observed (are integrated out), then
no row or column corresponding to them appears in equation (2.13).

3. Proofs

The theorem is proved by recurrence. We will first prove that equation (2.13) holds for the
initial casek1 = n, . . . , kp = n. Next we will prove that ifRk1,...,k`,...,kp has the form (2.13)
thenRk1,...,k`−1,...,kp obtained by integrating out one of thex`t , has the same form. Thus the
theorem is a consequence of the following two lemmas.

Lemma 1.The np × np determinant det[Kij (xir , xjs)], i, j = 1, . . . , p; r, s = 1, . . . , n, is,
apart from a constant, equal to the probability densityF(x1; . . . ;xp), equation (1.4),

det[Kij (xir , xjs)] i,j=1,...,p
r,s=1,...,n

=
( n−1∏
`=0

h−1
`

)
C−1F(x1; . . . ;xp). (3.1)

Lemma 2.Using the convolution∗ defined in (2.7):

(f ∗ g)(ξ, η) :=
∫
f (ξ, ζ )g(ζ, η)dζ (3.2)

let us assume that thep2 functionsKij (x, y), i, j = 1, . . . , p, are such that

Kij ∗Kjk =


Kik if i > j > k
−Kik if i < j < k

0 otherwise.

(3.3)

Then the integral of them×m determinant det[Kij (xir , xjs)], (i, j = 1, . . . , p; r = 1, . . . , ki ;
s = 1, . . . , kj ; k1 > 0, . . . , kp > 0; m = k1 + k2 + · · · + kp), over x`t is proportional to
the (m− 1)× (m− 1) determinant obtained from it by removing the row and the column
containing the variablex`t . The constant of proportionality isα` − k` + 1, with

α` =
∫
K``(x, x)dx. (3.4)

Let us recall here a result of Dyson [9, 10].

Dyson’s theorem.Let the functionK(x, y) be such thatK ∗K = K, then∫
det[K(xi, xj )]i,j=1,...,k dxk = (α − k + 1) det[K(xi, xj )]i,j=1,...,k−1 (3.5)

with

α =
∫
K(x, x)dx. (3.6)
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Our lemma 2 above is a generalization of this when the matrix elementsK(xi, xj ) are
replaced byki × kj matricesKij (xir , xjs).

Proof of lemma 1.Consider thenp × np matrix [Hij (xir , xjs)], equation (2.11), the rows
of which are denoted by the pair of indicesir and the columns byjs; i, j = 1, . . . , p;
r, s = 1, . . . , n. This matrix can be written as the product of two rectangular matrices
[Qi`(xir )] and [Pj`(xjs)/h`] respectively of sizesnp×n andn×np, with ` = 0, 1, . . . , n−1.
The rows of the first matrix [Qi`(xir )] are numbered by the pairir and its columns bỳ .
For [Pj`(xjs)/h`] the rows are numbered bỳand the columns byjs. Cutting the matrix
[Hij (xir , xjs)] into n× n blocks, we can write,

H =


Q̄1P̄1 Q̄1P̄2 · · · Q̄1P̄p
Q̄2P̄1 Q̄2P̄2 · · · Q̄2P̄p
· · · · · · · · · · · ·
Q̄pP̄1 Q̄pP̄2 · · · Q̄pP̄p



=


Q̄1

Q̄2
...

Q̄p


np×n

[ P̄1 P̄2 · · · P̄p ]n×np (3.7)

where [Q̄i ]r` := [Qi`(xir )] and [P̄j ]`s := [Pj`(xjs)/h`] are n× n matrices. Equation (3.7)
implies that the rank of [Hij (xir , xjs)] is at mostn. The rows of P̄1 and the columns
of Q̄p contain distinct monic polynomials, their ranks are thereforen, thus the rank of
[Hij (xir , xjs)] is n, and the lastn(p− 1) columns can be linearly expressed in terms of the
first n columns. In view of equations (2.10) and (2.12a) the firstn columns of [Hij (xir , xjs)]
are identical to the firstn columns of [Kij (xir , xjs)]. The determinant of the latter is therefore
not changed if we subtract from its lastn(p−1) columns the correspondingn(p−1) columns
of the former. Thus

det[Kij (xir , xjs)] = det[Hi1(xir , x1s),−Eij (xir , xjs)] i=1,...,p;j=2,...,p
r,s=1,2,...,n

= det


H11 −E12 −E13 · · · −E1p

H21 0 −E23 · · · −E2p
...

...
...

. . .
...

Hp−11 0 0 · · · −Ep−1p

Hp1 0 0 · · · 0

 . (3.8)

From equation (2.12a) the lastn rows of this matrix corresponding toi = p have non-
zero elements only in the firstn columns; also the matrix [Eij (xir , xjs)] is block triangular,
Eij (ξ, η) being zero fori > j . Therefore,

det[Kij (xir , xjs)] = det[Hp1(xpr , x1s)] det[Eij (xir , xjs)] i=1,...,p−1;j=2,...,p
r,s=1,2,...,n

= det[Hp1(xpr , x1s)]
p∏
j=2

det[Ej−1j (xj−1r , xjs)]

=
( n−1∏
`=0

h−1
`

)
det[Qp`(xpr)] det[P1`(x1s)]

p−1∏
j=1

det[wj(xjr , xj+1s)] (3.9)

and from equations (1.4), (2.5) one obtains equation (3.1). This ends the proof. �
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Figure 1. The permutationσ ′ = (4, 2, 3, 1, 2, 2).

The learned reader will have recognized that the aboveEij ’s play the same role as theε
in Dyson’s proof in the case of a single matrix of the circular orthogonal ensemble [9, 11].

Proof of lemma 2.We wish to integrate them×m determinant det[Kij (xir , xjs)] over x`t .
We can write the expansion of the determinant as a sum overm! permutations, writing these
permutations as a product of mutually exclusive cycles. The variablex`t occurs in the row
and the column labelled bỳt (recall that rows and columns are labelled by a pair of indices).
If `t forms a cycle by itself, then by equation (3.4) integration overx`t gives a factorα`, and
its coefficient is just the expansion of the(m−1)×(m−1) determinant obtained by removing
the row and the column containingx`t . If `t occurs in a longer cycle, say in the permutation
σ = (ir, `t, js, . . .)(. . .) . . . , then from equation (3.3) integration overx`t decreases the
length of the cycle containing̀t by 1, giving the permutationσ ′ = (ir, js, . . .)(. . .) . . . ,
and multiplies the corresponding term by a factor+1 if i > ` > j , by −1 if i < ` < j

and by 0 otherwise. So the question is, given the permutationσ ′, in how many ways can
one insert`t in any of its cycles with the algebraic weights+1, −1 and 0 to obtain a
permutationσ , or equivalently, how many properly weighted permutationsσ give the same
σ ′ on removing`t? Fortunately, it turns out that this number is independent ofσ ′, so that
the sum over the(m− 1)! permutationsσ ′ reproduces the(m− 1)× (m− 1) determinant
obtained by removing the row and the column containingx`t .

Let us represent the cycles of permutations by a graph. Since the discussion of the
weight+1, −1 or 0 depends only on the first index, only this first indexi, j, . . . of each
pair of indices will be plotted against the place number where they occur. For example, the
cycle (42, 26, 36, 15, 24, 22) is represented on figure 1, where points at successive heights
4, 2, 3, 1, 2, 2 are joined successively by line segments or ‘sides’. Note that we identify
the seventh and the first points. Permutationσ ′ is thus represented by a certain number of
closed directed polygons corresponding to its mutually exclusive cycles. Addition of`t in
one of the cycles ofσ ′ amounts to the addition of a point at a height` in the corresponding
polygon. If this added point lies on a non-ascending side, then the weight multiplying the
correspondingσ is +1, if it lies on an ascending side, the weight is−1, and this weight
is 0 otherwise. In other words, each downward crossing of the line at height`, with or
without stops, contributes a factor+1, each point on this height contributes a factor+1
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and each upward crossing, with or without stops, contributes a factor−1. The graph of
σ ′ consisting of closed loops, the number of upward crossings is equal to the number of
downward crossings at any height, and the corresponding contributions cancel out. The
algebraic sum of all such coefficients is thus seen to be the number of points at height` in
the graph ofσ ′, i.e. it is k` − 1. Also the permutationsσ andσ ′ have opposite signs, since
only one of their cycle lengths differ by unity. Thus∫

det[Kij (xir , xjs)]m×m dx`t = (α` − k` + 1) det[Kij (xir , xjs)](m−1)×(m−1) (3.10)

where the integrand on the left-hand side is anm×m determinant,i, j = 1, . . . , p; r = 1,
. . . , ki ; s = 1, . . . , kj ; m = k1 + k2 + · · · + kp and the result on the right-hand side is the
(m − 1) × (m − 1) determinant obtained from the integrand by removing the row and the
column containing the variablex`t . This ends the proof. �

Using equations (2.9)–(2.12), one verifies that theHij andEij satisfy the following
relations

Hij ∗Hjk = Hik (3.11)

Hij ∗ Ejk =
{
Hik if j < k

0 if j > k
(3.12)

Eij ∗Hjk =
{
Hik if i < j

0 if i > j
(3.13)

Eij ∗ Ejk =
{
Eik if i < j < k

0 if either i > j or j > k.
(3.14)

This implies for theKij = Hij − Eij , equation (2.10), the relations (3.3). Also

α` =
∫
K``(ξ, ξ)dξ = n. (3.15)

Using lemma 1 once and lemma 2 several times one obtains the normalization constantC,

C = (n!)−p
n−1∏
`=0

h−1
` . (3.16)

Again with repeated use of lemma 2 and from the definition, equation (1.6), of the correlation
functionRk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp ), one obtains equation (2.13).

4. Conclusion

The correlation functions of eigenvalues of a chain of random Hermitian matrices can thus
be written in a very compact form as a single determinant. This result may be used to study
the largen limit of correlations between eigenvalues [12, 14].
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